Addressing Failure Prediction by Learning Model Confidence

Charles Corbière

Conservatoire National des Arts et Métiers (CNAM) Laboratoire CEDRIC - Equipe MSDMA valeo.ai

le cnam valeo.ai

October 17, 2019

Context

True Class Probability

ConfidNet

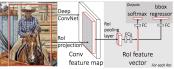
[Kendall et al. SegNet, 2015]

Experiments

Deep Learning in Computer Vision

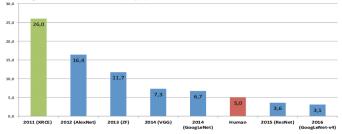
[Krizhevsky, 2012]

[Girshick et al. Fast R-CNN, 2015]



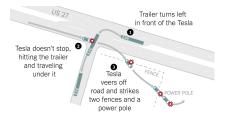
ImageNet Classification Error (Top 5)

Brought significant improvements in multiple vision tasks



Robustness issues

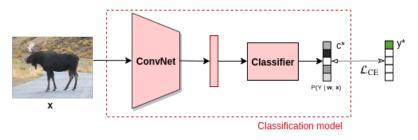
Tesla's car crash back in 2016, due to a confusion between white side of trailer and brightly lit sky



 \Rightarrow Are neural network's predictions reliable? How much is the model certain about our output? How do we account for uncertainty?

Classification framework

 $\mathcal{D} = \{(\mathbf{x}_i, y_i^*)\}_{i=1}^N \text{ with } \mathbf{x}_i \in \mathbb{R}^D \text{ and } y_i^* \in \mathcal{Y} = \{1, ..., K\}.$ One can infer predicted class $\hat{y} = \operatorname{argmax}_{k \in \mathcal{Y}} p(Y = k | \mathbf{w}, \mathbf{x}).$



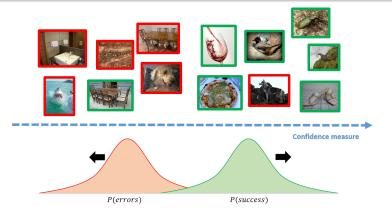
 Maximum Class Probability [Hendrycks and Gimpel, 2017] A confidence measure baseline for deep neural networks:

$$\mathrm{MCP}(\mathbf{x}) = \max_{k \in \mathcal{Y}} p(Y = k | \mathbf{w}, \mathbf{x})$$

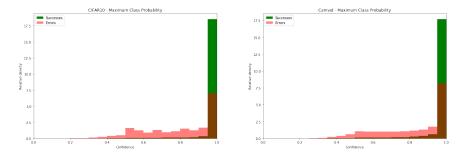
Failure Prediction

Goal

Provide **reliable confidence measures** over model's predictions whose ranking among samples enables to **distinguish correct from erroneous predictions**.



$$\mathrm{MCP}(\mathbf{x}) = \max_{k \in \mathcal{Y}} p(Y = k | \mathbf{w}, \mathbf{x})$$



overlapping distributions between successes vs. errors
 ⇒ hard to distinguish

(also, overconfident values for both distributions)

Our Approach: True Class Probability

When missclassifying, MCP \Leftrightarrow probability of the wrong class. \Rightarrow what if we had taken the probability of the true class?

True Class Probability

Given a sample (\mathbf{x}, y^*) and a model parametrized by \mathbf{w} , *True Class Probability* writes as:

$$\mathrm{TCP}(\mathbf{x}, y^*) = \rho(Y = y^* | \mathbf{w}, \mathbf{x})$$

Theoretical guarantees:

- TCP(\mathbf{x}, y^*) > 1/2 $\Rightarrow \hat{y} = y^*$
- TCP(\mathbf{x}, y^*) < 1/ $K \Rightarrow \hat{y} \neq y^*$

N.B: a normalized variant present stronger guarantees:

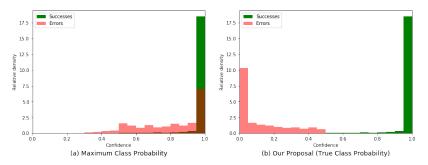
$$TCP^{r}(\mathbf{x}, y^{*}) = p(Y = y^{*}|\mathbf{w}, \mathbf{x})/p(Y = \hat{y}|\mathbf{w}, \mathbf{x})$$

True Class Probability

ConfidNet

TCP, a reliable confidence criterion

VGG16 on CIFAR-10

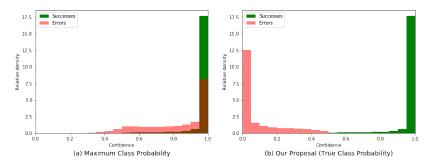


True Class Probability

ConfidNet

TCP, a reliable confidence criterion

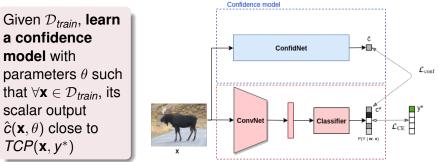
SegNet on CamVid



ConfidNet

ConfidNet: Learning TCP Model Confidence

However, $TCP(\mathbf{x}, y^*)$ is **unknown** at test time.

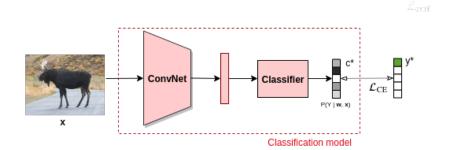


Classification model

As $TCP(\mathbf{x}, y^*) \in [0, 1]$, we propose ℓ_2 loss to train ConfidNet: $\mathcal{L}_{conf}(\theta; \mathcal{D}) = \frac{1}{N} \sum_{i=1}^{N} (\hat{c}(\mathbf{x}_i, \theta) - c^*(\mathbf{x}_i, y_i^*))^2$

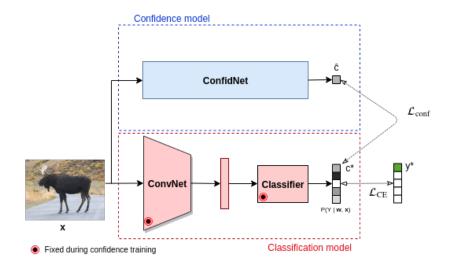
N.B: $c^*(\mathbf{x}, y^*) = TCP(\mathbf{x}, y^*)$ (or $TCP^r(\mathbf{x}, y^*)$)

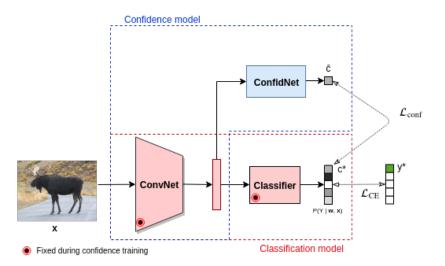
ConfidNet learning scheme

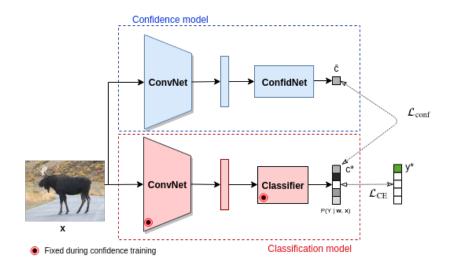


True Class Probability

ConfidNet learning scheme



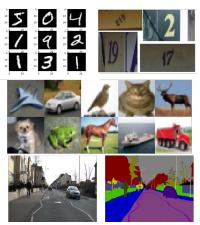




Experiments

Traditional public **image classification** and **semantic segmentation** datasets

- MNIST: 32x32 BW, 10 classes, 60K training + 10K test
- SVHN: 32x32 RGB , 10 classes, 73K training + 26K test
- CIFAR-10 & CIFAR-100: 32x32 RGB, 10 / 100 classes, 50K training + 10K test
- **CamVid**: *semantic segmentation*, 360x480, 11 classes



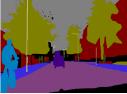
Quantitative results

Dataset	Model	FPR-95%-TPR	AUPR-Error	AUPR-Success	AUC
MNIST MLP	Baseline (MCP)	14.87	37.70	99.94	97.13
	MCDropout	15.15	38.22	99.94	97.15
	TrustScore	12.31	52.18	99.95	97.52
	ConfidNet (Ours)	11.79	57.37	99.95	97.83
MNIST Small ConvNet	Baseline (MCP)	5.56	35.05	99.99	98.63
	MCDropout	5.26	38.50	99.99	98.65
	TrustScore	10.00	35.88	99.98	98.20
	ConfidNet (Ours)	3.33	45.89	99.99	98.82
SVHN Small ConvNet	Baseline (MCP)	31.28	48.18	99.54	93.20
	MCDropout	36.60	43.87	99.52	92.85
	TrustScore	34.74	43.32	99.48	92.16
	ConfidNet (Ours)	28.58	50.72	99.55	93.44
CIFAR-10 VGG16	Baseline (MCP)	47.50	45.36	99.19	91.53
	MCDropout	49.02	46.40	99.27	92.08
	TrustScore	55.70	38.10	98.76	88.47
	ConfidNet (Ours)	44.94	49.94	99.24	92.12
CIFAR-100 VGG16	Baseline (MCP)	67.86	71.99	92.49	85.67
	MCDropout	64.68	72.59	92.96	86.09
	TrustScore	71.74	66.82	91.58	84.17
	ConfidNet (Ours)	62.96	73.68	92.68	86.28
CamVid SegNet	Baseline (MCP)	63.87	48.53	96.37	84.42
	MCDropout	62.95	49.35	96.40	84.58
	TrustScore		20.42	92.72	68.33
	ConfidNet (Ours)	61.52	50.51	96.58	85.02

Qualitative results

Failure detection for **semantic segmentation** on CamVid dataset

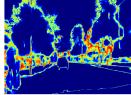
(a) Input Image



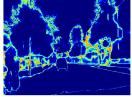
(b) Ground truth

(c) Prediction

(d) Model Errors



(e) ConfidNet



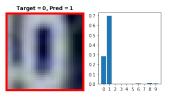
(f) MCP

Qualitative results

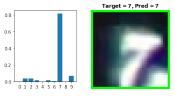
Entropy as a confident estimate, such as in MC-Dropout, may not always be adequate



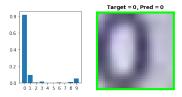
(a) MCP=0.596, MCDropout=-0.787, ConfidNet=0.449



(c) MCP=0.696, MCDropout=-0.726, ConfidNet=0.436



(b) MCP=0.816, MCDropout=-0.786, ConfidNet=0.894

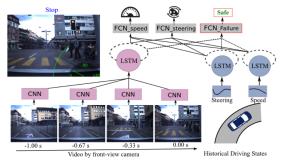


(d) MCP=0.814, MCDropout=-0.725, ConfidNet=0.886

• We defined TCP, a specific criterion for failure detection

$$TCP(\mathbf{x}, \mathbf{y}^*) = p(\mathbf{Y} = \mathbf{y}^* | \mathbf{w}, \mathbf{x})$$

 We proposed ConfidNet a model- and task-agnostic training method to learn TCP



• Application in various domains: autonomous driving, medical diagnosis, nuclear plant monitoring, etc...

Thank you for your attention.

Addressing Failure Prediction by Learning Model Confidence

Charles Corbière^{1,2} charles.corbiere@valeo.com Nicolas Thome¹ nicolas.thome@cnam.fr

Avner Bar-Hen¹ avner@cnam.fr Matthieu Cord^{2,3} matthieu.cord@lip6.fr

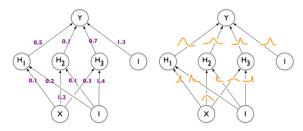
Patrick Pérez² patrick.perez@valeo.com

¹CEDRIC, Conservatoire National des Arts et Métiers, Paris, France ²valeo.ai, Paris, France ³Sorbonne University, Paris, France

Related work

Bayesian Monte-Carlo Dropout

We attach probability distributions to network weights (*Bayesian Neural Network*)



 compute posterior p(w|D) with variational inference approximation

• sample from posterior to obtain predictive distribution [Gal and Ghahramani, 2016] showed that **a NN with Dropout** can be seen as a variational Bayesian approximation

Related work

How to estimate uncertainty with Bayesian MCDropout?

- train a model with Dropout units
- given a point x, repeat T times:
 - keep Dropout units at test time
 - compute output prediction $f_W(\mathbf{x})$
- Compute Softmax mean output and entropy

$$p(y = c | \mathbf{x}, D) \approx \frac{1}{T} \sum_{t=1}^{T} \text{Softmax}(f_{\hat{w}_t}(\mathbf{x}))$$

$$\hat{\mathcal{H}}[\boldsymbol{y}|\boldsymbol{x}, \mathcal{D}] = -\sum_{\boldsymbol{c}} \left(\frac{1}{T} \sum_{t} p(\boldsymbol{y} = \boldsymbol{c} | \boldsymbol{x}, \hat{w}_{t}) \right) \\ \cdot \log \left(\frac{1}{T} \sum_{t} p(\boldsymbol{y} = \boldsymbol{c} | \boldsymbol{x}, \hat{w}_{t}) \right)$$

Related work

Trust Score [Jiang et al., 2018]

Measure the agreement between the classifier and a modified nearest-neighbor classifier on the testing example

Define k-NN radius

$$r_k(x) := \inf\{r > 0 : |B(\mathbf{x}, r) \cap X| \ge k\}$$

and $\varepsilon := \inf\{r > 0 : |\{\mathbf{x} \in X : r_k(\mathbf{x}) > r\}| \le \alpha N\}$

2 Estimate a α -high-density-set

$$H_{\alpha}(f) := \{\mathbf{x} \in X : r_k(\mathbf{x}) \le \varepsilon\}$$

Ompute Trust Score for classifier h

$$\xi(h,\mathbf{x}) := \frac{d(\mathbf{x},H_{\alpha}(f_{\tilde{h}(\mathbf{x})}))}{d(\mathbf{x},H_{\alpha}(f_{h(\mathbf{x})}))}$$

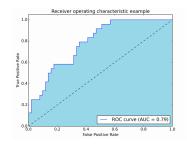
where $\tilde{h}(\mathbf{x}) = \operatorname{argmin}_{k \in \mathcal{Y}, k \neq h(\mathbf{x})} d(\mathbf{x}, H_{\alpha}(f_k))$

Context Failure Prediction True Class Probability Evaluation metrics

How to measure the quality of failure predictions?

AUROC: a

threshold-independent evaluation, based on the ROC curve which plots the *True Positive Rate* (TPR = TP / (TP +FN)) against the *False Positive Rate* (FPR = FP / (FP+ TN)).



ConfidNet

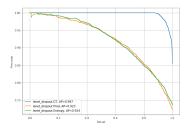
 \Rightarrow can be interpreted as the probability that a positive example has a greater detector score than a negative example

Experiments

Context Failure Prediction True Class Probability

But AUROC suffers from class inbalance

AUPR_Success: also threshold-independent, based on the PR curve which plots the precision (= TP / (TP+FP)) against recall (= TP / (TP+FN))



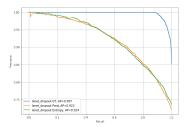
ConfidNet

 \Rightarrow where the positive class are correct predictions

Experiments

Evaluation metrics

AUPR_Error: also threshold-independent, based on the PR curve which plots the precision (= TP / (TP+FP)) against recall (= TP / (TP+FN))



 \Rightarrow where positive class are errors and scores are the negative of the confidence score

FPR at 95% TPR: measures the false positive rate (FPR) when the true positive rate (TPR) is equal to 95%.

With a high accuracy and a small validation set, we do not get a larger absolute number of errors using val set compared to train set.

Dataset	ConfidNet (train set)	ConfidNet (val set)
MLP	57.34%	33.41%
MNIST	43.94%	34.22%
SVHN	50.72%	47.96%
CIFAR-10	49.94%	48.93%
CIFAR-100	73.68%	73.85%
CamVid	50.28%	50.15%

Comparison with a BCE approach

TCP regularizes training by providing more fine-grained information about the quality of the classifier regarding a sample's prediction.

Dataset	TCP	BCE
SVHN	50.72%	50.00%
CIFAR-10	49.94%	47.95%
CamVid	50.51%	48.96%

 \Rightarrow difficult learning configuration where very few error samples are available in training.

References I

Gal, Y. and Ghahramani, Z. (2016).

Dropout as a bayesian approximation: Representing model uncertainty in deep learning.

In Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48, ICML'16, pages 1050–1059. JMLR.org.

 Hendrycks, D. and Gimpel, K. (2017).
 A baseline for detecting misclassified and out-of-distribution examples in neural networks.

Proceedings of International Conference on Learning Representations.

References II

 Jiang, H., Kim, B., Guan, M., and Gupta, M. (2018). To trust or not to trust a classifier. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, *Advances in Neural Information Processing Systems 31*, pages 5541–5552. Curran Associates, Inc.