

# Addressing Failure Prediction by Learning Model Confidence

Charles Corbière<sup>1,2</sup>, Nicolas Thome<sup>1</sup>, Avner Bar-Hen<sup>1</sup>, Matthieu Cord<sup>2,3</sup>, Patrick Pérez<sup>2</sup>

<sup>1</sup>CEDRIC, Conservatoire National des Arts et Métiers, Paris, France <sup>2</sup>valeo.ai, Paris, France <sup>3</sup>Sorbonne University, Paris, France





#### CONTEXT

#### Classification framework

 $\mathcal{D} = \{(\mathbf{x}_i, y_i^*)\}_{i=1}^N \text{ with } \mathbf{x}_i \in \mathbb{R}^d$ and  $y_i^* \in \mathcal{Y} = \{1, ..., K\}$ 

One can infer predicted class:

$$\hat{y} = \underset{k \in \mathcal{Y}}{\operatorname{argmax}} p(Y = k | \mathbf{w}, \mathbf{x})$$

#### Failure Prediction

- Provide reliable confidence measures
- Distinguish correct from erroneous predictions



• Applications in critical systems, e.g. autonomous driving, medical diagnosis, nuclear power plant monitoring

# True Class Probability (TCP)

• Maximum Class Probability, widely used baseline with DNN for measuring confidence [1]:

$$MCP(\mathbf{x}) = \max_{k \in \mathcal{Y}} p(Y = k|\mathbf{w}, \mathbf{x}) = p(Y = \hat{y}|\mathbf{w}, \mathbf{x})$$

- Issue: overlapping distributions between successes and errors
- $\Rightarrow$  hard to distinguish
- Calibration does not affect ranking



When missclassifying, MCP  $\iff$  probability of the wrong class ⇒ What if we had taken the probability of the true class?

# True Class Probability

 $\mathrm{TCP}:\ \mathbb{R}^d imes\mathcal{Y}\ o\mathbb{R}$  $(\mathbf{x}, y^*) \to p(Y = y^* | \mathbf{w}, \mathbf{x})$ 

$$TCP(\mathbf{x}, y^*) > 1/2 \Rightarrow \hat{y} = y^*$$
  
 $TCP(\mathbf{x}, y^*) < 1/K \Rightarrow \hat{y} \neq y^*$ 



## CONFIDNET: LEARNING TCP CONFIDENCE

 $TCP(\mathbf{x}, y^*)$  unknown at test time  $\Rightarrow$  Train a confidence neural network to learn TCP



• Learning scheme: 1- fix classifier weights, 2- learn ConfidNet layers with  $\mathcal{L}_{conf}$ , 3- duplicate and fine-tune encoder ConvNet+ConfidNet

$$\mathcal{L}_{\text{conf}}(\theta; \mathcal{D}) = \frac{1}{N} \sum_{i=1}^{N} (\hat{c}(\mathbf{x}_i, \theta) - c^*(\mathbf{x}_i, y_i^*))^2$$

• Architecture: succession of dense layers + final sigmoid activation

(f) MCP

• ConfidNet, a model- and task-agnostic training method to learn TCP

# EXPERIMENTS AND VISUALISATIONS

## Comparative experiments

- Traditional public **image classification** and **semantic segmentation** datasets
- ConfidNet outperforms confidence and uncertainty estimation baseline approaches

| AUPR_Error (%)     | MNIST<br>MLP | MNIST<br>Small ConvNet | SVHN<br>Small ConvNet | CIFAR-10<br>VGG16 | <b>CIFAR-100</b><br>VGG16 | CamVid<br>SegNet |
|--------------------|--------------|------------------------|-----------------------|-------------------|---------------------------|------------------|
| Baseline (MCP) [1] | 37.70        | 35.05                  | 48.18                 | 45.36             | 71.99                     | 48.53            |
| MCDropout [2]      | 38.22        | 38.50                  | 43.87                 | 46.40             | 72.59                     | 49.35            |
| TrustScore [3]     | 52.18        | 35.88                  | 43.32                 | 38.10             | 66.82                     | 20.42            |
| ConfidNet (Ours)   | 57.37        | <b>45.89</b>           | <b>50.72</b>          | 49.94             | 73.68                     | <b>50.51</b>     |

• ConfidNet improves over direct failure prediction: +0.72pt on SVHN, +1.99pt on CIFAR-10, +1.55pt on CamVid



(a) MCP=0.596, MCDropout=-0.787, ConfidNet=0.449





# Qualitative results

(d) Model Errors

• Confidence estimation for semantic segmentation on CamVid dataset



(e) ConfidNet

# REFERENCES





Code available: https://github. com/valeoai/ConfidNet

- Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-ofdistribution examples in neural networks. In ICLR, 2017.
- Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In ICML, 2016.
- Heinrich Jiang, Been Kim, Melody Guan, and Maya Gupta. To trust or not to trust a classifier. In NeurIPS, 2018.



• Using a val set to train ConfidNet only improves if low accuracy + large-scale